Interaction range of common goods shapes Black Queen dynamics beyond the cheater-cooperator narrative

Author:

Fullmer Matthew S.ORCID,van Dijk BramORCID,Takeuchi NobutoORCID

Abstract

AbstractDependencies among microorganisms often appear mutualistic in the lab, as microbes grow faster together than alone. However, according to the Black Queen (BQ) hypothesis, these dependencies are underpinned by the evolutionary benefits from loss-of-function mutations when others in the community can supply the necessary common goods. BQ dynamics often describe a cheater-cooperator scenario, where some ecotypes, the “cheaters,” produce no common goods and rely on others, the “cooperators”, for survival. We have previously proposed that in systems with multiple common goods, an alternative endpoint for BQ dynamics can emerge. This endpoint describes an ecosystem of interdependent ecotypes engaging in “mutual cheating”, i.e. where common good production isdistributed. However, even with multiple goods the common good production can becentralized, i.e. with one ecotype providing all common goods for the ecosystem. Here, we present an eco-evolutionary model that reveals that BQ dynamics can result in both distributed- or centralized common good production. The interaction range,i.e. the number of beneficiaries a producer can support, distinguishes between these two endpoints. While many ecosystems evolve to bemaximally distributedormaximally centralized, we also find intermediate ecosystems, where ecotypes that appear redundant are coexisting for long periods of time. Due to the limited interaction range, these redundant ecotypes are unable to distribute the production of common goods fully due to the presence of non-producing types. Despite non-producers thus stalling the division of labor, we observe that sudden structural shifts can occur that purge the non-producers from the ecosystem. Overall, our findings broaden the understanding of BQ dynamics, unveiling complex interactions beyond the simple cheater-cooperator narrative.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3