Imputing abundance of over 2500 surface proteins from single-cell transcriptomes with context-agnostic zero-shot deep ensembles

Author:

Chen Ruoqiao,Zhou Jiayu,Chen BinORCID

Abstract

AbstractCell surface proteins serve as primary drug targets and cell identity markers. The emergence of techniques like CITE-seq has enabled simultaneous quantification of surface protein abundance and transcript expression for multimodal data analysis within individual cells. The published data have been utilized to train machine learning models for predicting surface protein abundance based solely from transcript expression. However, the small scale of proteins predicted and the poor generalization ability for these computational approaches across diverse contexts, such as different tissues or disease states, impede their widespread adoption. Here we propose SPIDER (surface protein prediction using deep ensembles from single-cell RNA-seq), a context-agnostic zero-shot deep ensemble model, which enables the large-scale prediction of cell surface protein abundance and generalizes better to various contexts. Comprehensive benchmarking shows that SPIDER outperforms other state-of-the-art methods. Using the predicted surface abundance of >2500 proteins from single-cell transcriptomes, we demonstrate the broad applications of SPIDER including cell type annotation, biomarker/target identification, and cell-cell interaction analysis in hepatocellular carcinoma and colorectal cancer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3