Dietary Branched Chain Amino Acids Modify Post-Infarct Cardiac Remodeling and Function in the Murine Heart

Author:

Nguyen Daniel C.,Wells Collin K.,Taylor Madison S.,Martinez-Ondaro Yania,Brittian Kenneth R.,Brainard Robert E.,Moore Joseph B.,Hill Bradford G.

Abstract

ABSTRACTIntroductionBranch-chain amino acids (BCAA) are markedly elevated in the heart following myocardial infarction (MI) in both humans and animal models. Nevertheless, it remains unclear whether dietary BCAA levels influence post-MI remodeling. We hypothesize that lowering dietary BCAA levels prevents adverse cardiac remodeling after MI.Methods and ResultsTo assess whether altering dietary BCAA levels would impact circulating BCAA concentrations, mice were fed a low (1/3×), normal (1×), or high (2×) BCAA diet over a 7-day period. We found that mice fed the low BCAA diet had >2-fold lower circulating BCAA concentrations when compared with normal and high BCAA diet feeding strategies; notably, the high BCAA diet did not further increase BCAA levels over the normal chow diet. To investigate the impact of dietary BCAAs on cardiac remodeling and function after MI, male and female mice were fed either the low or high BCAA diet for 2 wk prior to MI and for 4 wk after MI. Although body weights or heart masses were not different in female mice fed the custom diets, male mice fed the high BCAA diet had significantly higher body and heart masses than those on the low BCAA diet. Echocardiographic assessments revealed that the low BCAA diet preserved stroke volume and cardiac output for the duration of the study, while the high BCAA diet led to progressive decreases in cardiac function. Although no discernible differences in cardiac fibrosis, scar collagen topography, or cardiomyocyte cross-sectional area were found between the dietary groups, male mice fed the high BCAA diet showed longer cardiomyocytes and higher capillary density compared with the low BCAA group.ConclusionsProvision of a diet low in BCAAs to mice mitigates eccentric cardiomyocyte remodeling and loss of cardiac function after MI, with dietary effects more prominent in males.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3