Abstract
ABSTRACTGlobal warming is pushing species to shift their ranges towards higher latitudes and elevations, causing a reassembly of plant communities potentially accompanied by community thermophilization (i.e., an increasing number or cover of thermophilic species, sometimes at the expense of mesic or cold-adapted species). Given the large variation typically observed in the magnitude and direction of range shifts, quantifying community thermophilization might provide a sensitive method to detect range shifts within short time periods and across limited spatial extents. Assessing changes in plant community composition as a whole might integrate early signs of range shifts across co-occurring species while accounting for changes in both occurrence and abundance.Here, we combine an assessment of (i) species-level range shifts, (ii) changes in species richness and (iii) changes in community-inferred temperatures along three mountain roads in Switzerland to ask whether plant communities have responded to warming climate over a 10 year period, and whether community thermophilization is an appropriate metric for early detection of these changes.We found a community thermophilization signal of +0.13°C over the 10-year study period based on presence-absence data only. Despite significant upward shifts of species’ upper range limits in the lower part of the studied elevational gradient and a decrease in species richness at high elevations, significant thermophilization was not detectable if community- inferred temperatures were weighted by species’ covers. Low cover values of species that were gained or lost over the study period and their similar species-specific temperatures to resident species explained the discrepancy between the thermophilization detected in either cover-weighted or unweighted models.Synthesis.Our work shows that plant species are shifting to higher elevations along roadsides in the western Swiss Alps and that this translates into a detectable warming signal of plant communities within 10 years. However, the species-level range shifts and the community-level warming effect are mostly based on low cover values of gained/lost species, preventing the detection of community thermophilization signals when incorporating cover changes. We therefore recommend using unweighted approaches for early detection of community-level responses to changing climate, ideally set into context by also assessing species-level range shifts.
Publisher
Cold Spring Harbor Laboratory