Using a mixed-reality headset to elicit and track clinically relevant movement in the clinic

Author:

Calame DylanORCID,Lester EvanORCID,Chiu Phil,Seeberger Lauren

Abstract

AbstractBackground21st century neurology will require scalable and quantitative tools that can improve neurologic evaluations over telehealth and expand access to care. Commercially available mixed-reality headsets allow for simultaneous presentation of stimuli via holograms projected into the real world and objective and quantitative measurement of hand movement, eye movement, and phonation.MethodsWe created 6 tasks designed to mimic standard neurologic assessments and administered them to a single participant via the Microsoft HoloLens 2 mixed-reality headset. The tasks assessed postural hand tremor, finger tapping, pronation and supination of hands, hand and eye tracking of a center-out task, hand and eye tracking of a random motion task, and vocal assessment.FindingsWe show the utility of the HoloLens for commonly used neurological exams. First, we demonstrate that headset-derived holograms can project hand movements and objects in 3D space, providing a method to accurately and reproducibly present test stimuli to reduce test-test variability. Second, we found that participant hand movements closely matched holographic stimuli using a variety of metrics calculated on recorded movement data. Third, we showed that the HoloLens can record and playback exam tasks for visual inspection, sharing with other medical providers, and future analysis. Fourth, we showed that vocal recordings and analysis could be used to profile vocal characteristics over time. Together, this demonstrates the versatility of mixed reality headsets and possible applications for neurological assessment.InterpretationAdministering components of the neurologic exam via a self-contained and commercially available mixed-reality headset has numerous benefits including detailed kinematic quantification, reproducible stimuli presentation from test to test, and can be self-administered expanding access to neurological care and saving hospital time and money.FundingThis work was supported by grants from the National Institutes of Health (NIH) (F30AG063468) (E.L.), (F31NS113395) (D.J.C), and the Pilot Grant Award from the University of Colorado Movement Disorders Center (D.J.C).

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Fahn, S. , Marsden, C. , Calne, D. , Goldstein, M. & Editors. Members of the UPDRS Development Committee. in Recent Developments in Parkinson’s Disease, Vol 2. 153–163, 293–304 (Macmillan Health Care Information, 1987).

2. A shortened version of the motor section of the unified Huntington's disease rating scale

3. SARA—a new clinical scale for the assessment and rating of ataxia;Nat Clin Pract Neurol,2007

4. Reliability and validity of the scale for the assessment and rating of ataxia: A study in 64 ataxia patients

5. Reliability of the Japanese version of the scale for the assessment and rating of ataxia (SARA);Brain and Nerve,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3