Single cell autofluorescence imaging reveals immediate metabolic shifts of neutrophils with activation across biological systems

Author:

Datta RupsaORCID,Miskolci VeronikaORCID,Gallego-López Gina M.ORCID,Britt EmilyORCID,Gillette AmaniORCID,Kralovec Aleksandr,Giese Morgan A.,Qian TongchengORCID,Fan Jing,Huttenlocher AnnaORCID,Skala Melissa C.ORCID

Abstract

AbstractNeutrophils, the most abundant leukocytes in human peripheral circulation, are crucial for the innate immune response. They are typically quiescent but rapidly activate in response to infection and inflammation, performing diverse functions such as oxidative burst, phagocytosis, and NETosis, which require significant metabolic adaptation. Deeper insights into such metabolic changes will help identify regulation of neutrophil functions in health and diseases. Due to their short lifespan and associated technical challenges, the metabolic processes of neutrophils are not completely understood. This study uses optical metabolic imaging (OMI), which entails optical redox ratio and fluorescence lifetime imaging microscopy of intrinsic metabolic coenzymes NAD(P)H and FAD to assess the metabolic state of single neutrophils. Primary human neutrophils were imagedin vitrounder a variety of activation conditions and metabolic pathway inhibitors, while metabolic and functional changes were confirmed with mass spectrometry, oxidative burst, and NETosis measurements. Our findings show that neutrophils undergo rapid metabolic remodeling to a reduced redox state, followed by a shift to an oxidized redox state during activation. Additionally, single cell analysis reveals a heterogeneous metabolic response across neutrophils and donors to live pathogen infection (Pseudomonas aeruginosaandToxoplasma gondii). Finally, consistent metabolic changes were validated with neutrophilsin vivousing zebrafish larvae. This study demonstrates the potential of OMI as a versatile tool for studying neutrophil metabolism and underscores its use across different biological systems, offering insights into neutrophil metabolic activity and function at a single cell level.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3