The acquisition of additional control over quorum sensing regulation buffers noise in microbial growth dynamics

Author:

Fondi MarcoORCID,Riccardi Christopher,Patti Francesca Di,Coscione Francesca,Mengoni AlessioORCID,Perrin Elena

Abstract

ABSTRACTQuorum sensing (QS) is a cell-to-cell communication system used by bacteria to act collectively. Often, bacteria possess more than one QS regulatory module that form complex regulatory networks. Presumably, these configurations have evolved through the integration of novel transcription factors into the native regulatory systems. The selective advantages provided by these alternative configurations on QS-related phenotypes is poorly predictable only based on their underlying network structure. Here we show that the acquisition of extra regulatory modules of QS has important consequences on the overall regulation of microbial growth dynamics by significantly reducing the variability in the final size of the population inBurkholderia. We mapped the distribution of horizontally transferred QS modules in extant bacterial genomes, finding that these tend to add up to already-present modules in the majority of cases, 63.32%. We then selected a strain harboring two intertwined QS modules and,using mathematical modelling, we predicted an intrinsic ability of the newly acquired module to buffer noise in growth dynamics. We experimentally validated this prediction choosing one strain possessing both systems, deleting one of the two and measuring key growth parameters and QS synthase expression. We extended such considerations on two other strains naturally implementing the two versions of the QS regulation studied herein. Finally, using transcriptomics, we show that the de-regulation of metabolism likely plays a key role in differentiating the two configurations. Our results shed light on the role of additional control over QS regulation and illuminate on the possible phenotypes that may arise after HGT events.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3