Plasmids modulate microindel mutations inAcinetobacter baylyiADP1

Author:

Liljegren Mikkel M.ORCID,Gama João A.ORCID,Johnsen Pål J.ORCID,Harms KlausORCID

Abstract

AbstractPlasmids can impact the evolution of their hosts, e.g. due to carriage of mutagenic genes, through cross-talk with host genes or as result of SOS induction during transfer. Here we demonstrate that plasmids can cause microindel mutations in the host genome. These mutations are driven by the production of single-stranded DNA molecules that invade replication forks at microhomologies and subsequently get integrated into the genome. Using the gammaproteobacterial model organismAcinetobacter baylyi, we show that carriage of broad host range plasmids from different incompatibility groups can cause microindel mutations directly or indirectly. The plasmid pQLICE belonging to the incompatibility group Q (IncQ) and replicating by a characteristic strand displacement mechanism can generate chromosomal microindel mutations directly with short stretches of DNA originating from pQLICE. In addition, the presence of plasmids can increase microindel mutation frequencies indirectly (i.e., with chromosomal ectopic DNA) as shown with the IncP plasmid vector pRK415 (theta replication mechanism), presumably through plasmid-chromosome interactions that lead to DNA damages. These results provide new mechanistic insights into the microindel mutation mechanism, suggesting that single-stranded DNA repair intermediates are the causing agents. By contrast, the IncN plasmid RN3 appears to suppress host microindel mutations. The suppression mechanism remains unknown. Other plasmids in this study confer ambiguous or no quantifiable mutagenic effects.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3