Calcium phosphate nanoclusters modify periodontium remodeling and minimize orthodontic relapse

Author:

Cuylear Darnell L.ORCID,Fu Moyu L.,Chau Justin C.,Kharbikar Bhushan,Kazakia Galateia J.,Jheon Andrew,Habelitz Stefan,Kapila Sunil D.,Desai Tejal A.

Abstract

AbstractOrthodontic relapse is one of the most prevalent concerns of orthodontic therapy. Relapse results in patients’ teeth reverting towards their pretreatment positions, which increases the susceptibility to functional problems, dental disease, and substantially increases the financial burden for retreatment. This phenomenon is thought to be induced by rapid remodeling of the periodontal ligament (PDL) in the early stages and poor bone quality in the later stages. Current therapies, including fixed or removable retainers and fiberotomies, have limitations with patient compliance and invasiveness. Approaches using biocompatible biomaterials, such as calcium phosphate polymer-induced liquid precursors (PILP), is an ideal translational approach for minimizing orthodontic relapse. Here, post-orthodontic relapse is reduced after a single injection of high concentration PILP (HC-PILP) nanoclusters by altering PDL remodeling in the early stage of relapse and improving trabecular bone quality in the later phase. HC-PILP nanoclusters are achieved by using high molecular weight poly aspartic acid (PASP, 14 kDa) and poly acrylic acid (PAA, 450 kDa), which resulted in a stable solution of high calcium and phosphate concentrations without premature precipitation.In vitroresults show that HC-PILP nanoclusters prevented collagen type-I mineralization, which is essential for the tooth-periodontal ligament (PDL)-bone interphase.In vivoexperiments show that the PILP nanoclusters minimize relapse and improve the trabecular bone quality in the late stages of relapse. Interestingly, PILP nanoclusters also altered the remodeling of the PDL collagen during the early stages of relapse. Furtherin vitroexperiments showed that PILP nanoclusters alter the fibrillogenesis of collagen type-I by impacting the protein secondary structure. These findings propose a novel approach for treating orthodontic relapse and provide additional insight into the PILP nanocluster’s structure and properties on collagenous structure repair.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3