Rhythmic modulation of subthalamo-pallidal interactions depends on synaptic rewiring through inhibitory plasticity

Author:

Asl Mojtaba MadadiORCID,Lea-Carnall Caroline A.ORCID

Abstract

AbstractRhythmic stimulation offers a paradigm to modulate brain oscillations and, therefore, influence brain function. A growing body of evidence indicates that reciprocal interactions between the neurons of the subthalamic nucleus (STN) and globus pallidus externus (GPe) play a central role in the emergence of abnormal synchronous beta (15-30 Hz) oscillations in Parkinson’s disease (PD). The proliferation of inhibitory GPe-to-STN synapses following dopamine loss exacerbates this pathological activity. Rhythmic modulation of the STN and/or GPe, for example, by deep brain stimulation (DBS), can restore physiological patterns of activity and connectivity. Here, we tested whether dual targeting of STN-GPe by rhythmic stimulation can modulate pathologically strong GPe-to-STN synapses through inhibitory spike-timing-dependent plasticity (iSTDP). More specifically, we examined how time-shifted paired stimuli delivered to the STN and GPe can lead to inter-population synaptic rewiring. To that end, we first theoretically analysed the optimal range of stimulation time shift and frequency for effective synaptic rewiring. Then, as a minimal model for generating subthalamo-pallidal oscillations in healthy and PD conditions, we considered a biologically inspired STN-GPe loop comprised of conductance-based spiking neurons. Consistent with the theoretical predictions, rhythmic stimulation with appropriate time shift and frequency modified GPe-to-STN interactions through iSTDP, i.e., by long-lasting rewiring of pathologically strong synaptic connectivity. This ultimately caused desynchronising after-effects within each population such that excessively synchronous beta activity in the PD state was suppressed, resulting in a decoupling of the STN-GPe network and restoration of healthy dynamics in the model. Decoupling effects of the dual STN-GPe stimulation can be realised by time-shifted continuous and intermittent stimuli, as well as monopolar and bipolar simulation waveforms. Our findings demonstrate the critical role of neuroplasticity in shaping long-lasting stimulation effects and may contribute to the optimisation of a variety of multi-site stimulation paradigms aimed at reshaping dysfunctional brain networks by targeting plasticity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3