Forest edges and other semi-natural habitat edges increase wild bee species richness and habitat connectivity in intensively managed temperate landscapes

Author:

Sydenham Markus A.K.ORCID,Nielsen AndersORCID,Dupont Yoko L.ORCID,Rasmussen ClausORCID,Madsen Henning B.ORCID,Torvanger Marianne S.ORCID,Star BastiaanORCID

Abstract

AbstractPollinator conservation schemes are typically focused on conserving existing-, restoring degraded- or establishing new wild bee habitats. The effectiveness of such conservation schemes depends on the presence of dispersal corridors that allow habitat colonization by bees. Nonetheless, we lack an understanding of the role of semi-natural habitats edges on the connectivity of pollinator communities across intensively managed landscapes. Here, we use data from wild bee communities comprising 953 occurrences from 79 species of non-parasitic bees, sampled at 68 locations distributed across a Norwegian and a Danish landscape to show that the proportion of semi-natural habitat edges is positively correlated to bee species richness and habitat connectivity. Specifically, we found that wild bee species richness sampled along roadsides increased with the proportion of semi-natural habitat edges within1.5 km of the study sites and with local plant species richness. We combined maps showing the proportion of seminatural habitat edges with least cost path analysis to find the most likely dispersal route between our bee communities. We find that these least cost path lengths provide better models of bee species compositional similarity than geographic distance (|ΔAICc| > 2), suggesting that seminatural habitat edges act as dispersal corridors in intensively managed landscapes. However, we also find that compositional similarity between communities depend on site-specific plant species richness stressing the importance of improving the habitat quality of edge habitats if they are to function as dispersal corridors. We discuss potential management options for improving wild bee habitat conditions along seminatural habitat edges and illustrate how maps of least cost paths can be used to identify dispersal corridors between pollinator habitats of conservation priority. Maps of dispersal corridors can be used to direct wild bee habitat management actions along seminatural habitat edges to facilitate the dispersal of bees between larger grassland habitats.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3