A Novel Registration Framework for Aligning Longitudinal Infant Brain Tensor Images

Author:

Duan KuaikuaiORCID,Li LongchuanORCID,Calhoun Vince D.ORCID,Shultz SarahORCID

Abstract

AbstractRegistering longitudinal infant brain images is challenging, as the infant brain undergoes rapid changes in size, shape and tissue contrast in the first months and years of life. Diffusion tensor images (DTI) have relatively consistent tissue properties over the course of infancy compared to commonly used T1 or T2- weighted images, presenting great potential for infant brain registration. Moreover, groupwise registration has been widely used in infant neuroimaging studies to reduce bias introduced by predefined atlases that may not be well representative of samples under study. To date, however, no methods have been developed for groupwise registration of tensor-based images. Here, we propose a novel registration approach to groupwise align longitudinal infant DTI images to a sample-specific common space. Longitudinal infant DTI images are first clustered into more homogenous subgroups based on image similarity using Louvain clustering. DTI scans are then aligned within each subgroup using standard tensor-based registration. The resulting images from all subgroups are then further aligned onto a sample-specific common space. Results show that our approach significantly improved registration accuracy both globally and locally compared to standard tensor-based registration and standard fractional anisotropy-based registration. Additionally, clustering based on image similarity yielded significantly higher registration accuracy compared to no clustering, but comparable registration accuracy compared to clustering based on chronological age. By registering images groupwise to reduce registration bias and capitalizing on the consistency of features in tensor maps across early infancy, our groupwise registration framework facilitates more accurate alignment of longitudinal infant brain images.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3