Influence of predation mortality on past and future dynamics of Pacific Herring: implications for stock status and future biomass

Author:

Doherty BeauORCID,Johnson Samuel D. N.ORCID,Benson Ashleen J.ORCID,Cox Sean P.,Cleary Jaclyn S.,Lane Jim

Abstract

AbstractThe recovery of marine mammals from historical over-exploitation in the 1970s represents one of the largest changes in trophic structure in the northeast Pacific Ocean over the last century, for which the impacts on key forage species such as Pacific Herring (Clupea pallasii) are poorly understood. This has prompted hypotheses that increasing marine mammal populations are the primary cause for productivity declines for some fish stocks and their lack of recovery to historical abundance levels. In this study, we evaluate such a hypothesis for Pacific Herring by quantifying historical predation rates by key predators including cetaceans (Pacific Humpbacks, Grey Whales), pinnipeds (Stellar Sea Lions, Harbour Seals), and piscivorous fish (Pacific Hake). Predation mortality is quantified via a novel approach that integrates a single-species catch-at-age model with estimates of predator consumption derived from bioenergetic models. We found that predator consumption, largely driven by Humpback Whales, explained increasing Pacific Herring natural mortality rates in recent years and could be used to forecast future mortality. Incorporating higher future natural mortality rates produced higher estimates of current stock status (1.09-1.2B0) based on lower estimates of equilibrium unfished biomass (17.5-20.3 kt). Conversely, models that assumed mortality was more like the historical average had lower stock status (0.63B0) and higher estimates of unfished biomass (32.4 kt). We demonstrate a practical approach for ecosystem modelling that can be used to develop operating model scenarios for management strategy evaluation, improving scientific defensibility by removing an element of analyst choice for future mortality scenarios. We discuss how simpler modifications to single-species model assumptions can be more pragmatic for providing fisheries management advice, while more complex multi-species or ecosystem models might provide more nuanced insights for exploring research questions related to multi-species ecosystems and fisheries interactions.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. Foraging arena theory;Fish and fisheries,2012

2. Ashleen J Benson , Jaclyn S Cleary , Sean P Cox , Samuel Johnson , and Matthew Grinnell . Performance of management procedures for British Columbia Pacific Herring (Clupea pallasii) in the presence of model uncertainty: closing the gap between precautionary fisheries theory and practice. DFO Can. Sci. Advis. Sec. Res. Doc, (2022/048), 2023.

3. Predation on Pacific herring (Clupea pallasi) spawn by birds in Prince William Sound, Alaska

4. John Calambokidis and Jay Barlow . Updated abundance estimates for blue and humpback whales along the us west coast using data through 2018. 2020.

5. Competing tradeoffs between increasing marine mammal predation and fisheries harvest of chinook salmon;Scientific reports,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3