Constructing Ensemble Gene Functional Networks Capturing Tissue/condition-specific Co-expression from Unlabled Transcriptomic Data with TEA-GCN

Author:

Lim Peng KenORCID,Wang RuoxiORCID,Velankanni Jenet Princy Antony,Mutwil MarekORCID

Abstract

AbstractGene co-expression networks (GCNs) generated from public transcriptomic datasets can elucidate the co-regulatory and co-functional relationships between genes, making GCNs an important tool to predict gene functions. However, current GCN construction methods are sensitive to the quality of the data, and the interpretability of the identified relationships between genes is still difficult. To address this, we present a novel method — Two-Tier Ensemble Aggregation (TEA-) GCN. TEA-GCN utilizes unsupervised partitioning of big transcriptomic datasets and three correlation coefficients to generate ensemble GCNs in a two-step aggregation process. We show that TEA-GCN outperforms in finding correct functional relationships between genes over the current state-of-the-art across three model species, and is able to not only capture condition/tissue-specific gene co-expression but explain them through the use of natural language processing (NLP). In addition, we found TEA-GCN to be especially performant in identifying relationships between transcription factors and their activation targets, making it effective in inferring gene regulatory networks. TEA-GCN is available athttps://github.com/pengkenlim/TEA-GCN.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3