Characterization of Dnajc12 knockout mice, a model of hypodopaminergia

Author:

Deng Isaac Bul,Follett Jordan,Fox Jesse D.,Farrer Matthew J.ORCID

Abstract

AbstractHomozygousDNAJC12c.79-2A>G (p. V27Wfs*14) loss-of-function mutations were first reported as a cause of young-onset Parkinson’s disease. However, bi-allelic autosomal recessive pathogenic variants inDNAJC12may lead to an alternative constellation of neurological features including infantile dystonia, developmental delay, intellectual disability and neuropsychiatric disorders. DNAJC12 is understood to co-chaperone aromatic amino acid hydroxylases to enhance the synthesis of biogenic amines.In vitro, we confirm overexpressed DNAJC12 forms a complex with tyrosine hydroxylase, the rate-limiting enzyme in dopamine (DA) synthesis. Now we describe a conditional knockout mouse (cDKO) in which loxP sites flankingDnajc12exon 2 enable its excision by cre-recombinase to create a constitutiveDnajc12knock out (DKO). At three months of age, DKO animals exhibit reduced locomotion and exploratory behavior in automated open-field testing. DKO mice also manifest increased plasma phenylalanine levels, a cardinal feature of patients withDNAJC12pathogenic variants. In striatal tissue, total DA and serotonin, and their metabolites, are reduced. Biochemical alterations in synaptic proteins and tyrosine hydroxylase are also apparent, with enhanced phosphorylation of pSer31 and pSer40 sites that may reflect biological compensation. Electrically-evoked striatal DA is reduced. Most immediately, cDKO and DKO mice present models to develop and refined therapeutic approaches for the treatment of DNAJC12 dystonia and parkinsonism. These models may also enable the pleiotropic functions of biogenic amines (including DA) to be individually investigated in the brain and periphery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3