MIST: an interpretable and flexible deep learning framework for single-T cell transcriptome and receptor analysis

Author:

Lai Wenpu,Li Yangqiu,Luo Oscar JunhongORCID

Abstract

AbstractJoint analysis of transcriptomic and T cell receptor (TCR) features at single-cell resolution provides a powerful approach for in-depth T cell immune function research. Here, we introduce a deep learning framework for single-T cell transcriptome and receptor analysis, MIST (Multi-Insight for T cell). MIST features three latent spaces: gene expression, TCR, and a joint latent space. Through analyses of antigen- specific T cells and T cells related to lung cancer immunotherapy, we demonstrate MIST’s interpretability and flexibility. MIST easily and accurately resolves cell function and antigen-specificity by vectorizing and integrating transcriptome and TCR data of T cells. In addition, using MIST, we identified the heterogeneity of CXCL13+subsets in lung cancer infiltrating CD8+T cells and their association with immunotherapy, providing additional insights into the functional transition of CXCL13+T cells related to anti-PD-1 therapy that were not reported in the original study. MIST is available athttps://github.com/aapupu/MIST.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3