Surfing beta burst waveforms to improve motor imagery-based BCI

Author:

Papadopoulos S.ORCID,Darmet L.ORCID,Szul M.J.ORCID,Congedo M.ORCID,Bonaiuto J.J.ORCID,Mattout J.ORCID

Abstract

AbstractOur understanding of motor-related, macroscale brain processes has been significantly shaped by the description of the event-related desynchronization (ERD) and synchronization (ERS) phenomena in the mu and beta frequency bands prior to, during and following movement. The demonstration of reproducible, spatially-and band-limited signal power changes has, consequently, attracted the interest of non invasive brain-computer interface (BCI) research for a long time. BCIs often rely on motor imagery (MI) experimental paradigms that are expected to generate brain signal modulations analogous to movement-related ERD and ERS. However, a number of recent neuroscience studies has questioned the nature of these phenomena. Beta band activity has been shown to occur, on a single-trial level, in short, transient and heterogeneous events termed bursts rather than sustained oscillations. In a previous study, we established that an analysis of hand MI binary classification tasks based on beta bursts can be superior to beta power in terms of classification score. In this article we elaborate on this idea, proposing a signal processing algorithm that is comparable to-and compatible with state-of-the-art techniques. Our pipeline filters brain recordings by convolving them with kernels extracted from beta bursts and then applies spatial filtering before classification. This data-driven filtering allowed for a simple and efficient analysis of signals from multiple sensors thus being suitable for online applications. By adopting a time-resolved decoding approach we explored MI dynamics and showed the specificity of the new classification features. In accordance with previous results, beta bursts improved classification performance compared to beta band power, while often increasing information transfer rate compared to state-of-the-art approaches.Significance statementPatterns of waveform-specific burst rate comprise an alternative, neurophysiology-informed way of analyzing beta band activity during motor imagery (MI) tasks. By testing this method on multiple electroencephalography datasets and comparing its corresponding classification scores against those of conventional power-based features, this work demonstrates that brain-computer interface applications could benefit from utilizing beta burst activity. This activity gives access to a reliable decoding performance often requiring short recordings. As such, this study shows that waveform-specific beta burst rates encode information related to imagined (and presumably real) movements and serves as the first step for a real-time implementation of the proposed methodology.

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. Error-related modulations of the sensorimotor post-movement and foreperiod beta-band activities arise from distinct neural substrates and do not reflect efferent signal processing

2. Information transfer rate in BCIs: Towards tightly integrated symbiosis

3. Fitting Linear Mixed-Effects Models Usinglme4

4. Blankertz B , Kawanabe M , Tomioka R , Hohlefeld FU , Nikulin V , Müller KR . 2008. Invariant common spatial patterns: Alleviating nonstationarities in Brain-Computer Interfacing. Adv Neural Inf Process Syst 20 - Proc 2007 Conf 1–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3