Imaging of developing human brains with ex vivo PSOCT and dMRI

Author:

Wang Hui,Blanke Nathan,Gong Dayang,Ortug Alpen,Alatorre Warren Jose Luis,Clickner Christopher,Ammon William,Nolan Jackson,Cotronis Zoe,van der Kouwe Andre,Takahashi Emi

Abstract

AbstractThe human brain undergoes substantial developmental changes in the first five years of life. Particularly in the white matter, myelination of axons occurs near birth and continues at a rapid pace during the first 2 to 3 years. Diffusion MRI (dMRI) has revolutionized our understanding of developmental trajectories in white matter. However, the mm-resolution ofin vivotechniques bears significant limitation in revealing the microstructure of the developing brain. Polarization sensitive optical coherence tomography (PSOCT) is a three-dimensional (3D) optical imaging technique that uses polarized light interferometry to target myelinated fiber tracts with micrometer resolution. Previous studies have shown that PSOCT contributes significantly to the elucidation of myelin content and quantification of fiber orientation in adult human brains. In this study, we utilized the PSOCT technique to study developing brains during the first 5 years of life in combination with ex vivo dMRI. The results showed that the optical properties of PSOCT quantitatively reveal the myelination process in young children. The imaging contrast of the optic axis orientation is a sensitive measure of fiber orientations in largely unmyelinated brains as young as 3-months-old. The micrometer resolution of PSOCT provides substantially enriched information about complex fiber networks and complements submillimeter dMRI. This new optical tool offers great potential to reveal the white matter structures in normal neurodevelopment and developmental disorders in unprecedented detail.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. Quantitative growth and development of human brain

2. Age-related volumetric changes of brain gray and white matter in healthy infants and children;Cereb. Cortex N. Y. N 1991,2001

3. White matter myelination during early infancy is linked to spatial gradients and myelin content at birth

4. Imaging the rapidly developing brain: Current challenges for MRI studies in the first five years of life;Dev. Cogn. Neurosci,2020

5. Assessment of Normal Myelination with Magnetic Resonance Imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3