A Burst-Dependent Algorithm for Neuromorphic On-Chip Learning of Spiking Neural Networks

Author:

Stuck MichaelORCID,Naud RichardORCID

Abstract

AbstractThe field of neuromorphic engineering addresses the high energy demands of neural networks through brain-inspired hardware for efficient neural network computing. For on-chip learning with spiking neural networks, neuromorphic hardware requires a local learning algorithm able to solve complex tasks. Approaches based on burst-dependent plasticity have been proposed to address this requirement, but their ability to learn complex tasks has remained unproven. Specifically, previous burst-dependent learning was demonstrated on a spiking version of the XOR problem using a network of thousands of neurons. Here, we extend burst-dependent learning, termed ‘Burstprop’, to address more complex tasks with hundreds of neurons. We evaluate Burstprop on a rate-encoded spiking version of the MNIST dataset, achieving low test classification errors, comparable to those obtained using backpropagation through time on the same architecture. Going further, we develop another burst-dependent algorithm based on the communication of two types of error-encoding events for the communication of positive and negative errors. We find that this new algorithm performs better on the image classification benchmark. We also tested our algorithms under various types of feedback connectivity, establishing that the capabilities of fixed random feedback connectivity is preserved in spiking neural networks. Lastly, we tested the robustness of the algorithm to weight discretization. Together, these results suggest that spiking Burstprop can scale to more complex learning tasks while maintaining efficiency, potentially providing a viable method for learning with neuromorphic hardware.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. Opportunities for neuromorphic computing algorithms and applications;Nature Computational Science,2022

2. Visualizing a joint future of neuroscience and neuromorphic engineering;Neuron,2021

3. Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip;Nature Communications,2024

4. Towards spike-based machine intelligence with neuromorphic computing

5. Event-based vision: A survey;IEEE transactions on pattern analysis and machine intelligence,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3