Placental-brain axis in females detected within broadly impacted metabolic gene networks protects against prenatal PCB exposure

Author:

Chau Kelly,Neier Kari,Valenzuela Anthony E.,Schmidt Rebecca J.ORCID,Durbin-Johnson Blythe,Lein Pamela J.,Korf Ian,LaSalle Janine M.

Abstract

AbstractBackgroundNeurodevelopmental disorders have a strong male bias that is poorly understood. Placenta is a rich source of molecular information about environmental interactions with genetics (including biological sex), that affect the developing brain. We investigated placental-brain transcriptional responses in an established mouse model of prenatal exposure to a human-relevant mixture of polychlorinated biphenyls (PCBs).ResultsTo understand sex, tissue, and dosage effects in embryonic (E18) brain and placenta by RNAseq, we used weighted gene correlation network analysis (WGCNA) to create correlated gene networks that could be compared across sex or tissue. WGCNA revealed that expression within most correlated gene networks was significantly and strongly associated with PCB exposures, but frequently in opposite directions between male-female and placenta-brain comparisons. In both WGCNA and differentially expressed gene analyses, male brain showed more PCB-induced transcriptional changes than male placenta, but the reverse pattern was seen in females. Furthermore, non-monotonic dose responses to PCBs were observed in most gene networks but were most prominent in male brain. The transcriptomic effects of low dose PCB exposure were significantly reversed by dietary folic acid supplementation across both sexes, but these effects were strongest in female placenta. PCB-dysregulated and folic acid-reversed gene networks were commonly enriched in functions in metabolic pathways involved in energy usage and translation, with female-specific protective effects enriched in PPAR, thermogenesis, glycerolipids, and O-glycan biosynthesis, as opposed to toxicant responses in male brain.ConclusionsThe female protective effect in prenatal PCB exposures appears to be mediated by dose-dependent sex differences in transcriptional modulation of metabolism in placenta.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3