A variational deep-learning approach to modeling memory T cell dynamics

Author:

van Dorp Christiaan H.ORCID,Gray Joshua I.ORCID,Paik Daniel H.ORCID,Farber Donna L.ORCID,Yates Andrew J.ORCID

Abstract

AbstractMechanistic models of dynamic, interacting cell populations have yielded many insights into the growth and resolution of immune responses. Historically these models have described the behavior of pre-defined cell types based on small numbers of phenotypic markers. The ubiquity of deep phenotyping therefore presents a new challenge; how do we confront tractable and interpretable mathematical models with high-dimensional data? To tackle this problem, we studied the development and persistence of lung-resident memory CD4 and CD8 T cells (TRM) in mice infected with influenza virus. We developed an approach in which dynamical model parameters and the population structure are inferred simultaneously. This method uses deep learning and stochastic variational inference and is trained on the single-cell flow-cytometry data directly, rather than on the kinetics of pre-identified clusters. We show that during the resolution phase of the immune response, memory CD4 and CD8 T cells within the lung are phenotypically diverse, with subsets exhibiting highly distinct and time-dependent dynamics. TRMheterogeneity is maintained long-term by ongoing differentiation of relatively persistent Bcl-2hiCD4 and CD8 TRMsubsets which resolve into distinct functional populations. Our approach yields new insights into the dynamics of tissue-localized immune memory, and is a novel basis for interpreting time series of high-dimensional data, broadly applicable to diverse biological systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3