Denoising, Deblurring, and optical Deconvolution for cryo-ET and light microscopy with a physics-informed deep neural network DeBCR

Author:

Li RuiORCID,Yushkevich ArtsemiORCID,Chu XiaofengORCID,Kudryashev MikhailORCID,Yakimovich ArturORCID

Abstract

AbstractComputational image-quality enhancement for microscopy (deblurring, denoising, and optical deconvolution) provides researchers with detailed information on samples. Recent general-purpose deep learning solutions advanced in this task. Yet, without consideration of the underlying physics, they may yield unrealistic and non-existent details and distortions during image restoration, requiring domain expertise to discern true features from artifacts. Furthermore, the large expressive capacity of general-purpose deep learning models requires more resources to train and use in applications. We introduce DeBCR, a physics-informed deep learning model based on wavelet theory to enhance microscopy images. DeBCR is a light model with a fast runtime and without hallucinations. We evaluated the image restoration performance of DeBCR and 12 current state-of-the-art models over 6 datasets spanning crucial modalities in advanced light microscopy and cryo-electron tomography. Leveraging optic models, DeBCR demonstrates superior performance in denoising, optical deconvolution, and deblurring tasks across both LM and cryo-ET modalities.

Publisher

Cold Spring Harbor Laboratory

Reference71 articles.

1. Sanderson, M. J. , Smith, I. , Parker, I. & Bootman, M. D. Fluorescence Microscopy. Cold Spring Harb. Protoc. 2014, pdb.top071795 (2014).

2. Live Cell Imaging Using Wide-Field Microscopy and Deconvolution.

3. Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity

4. Super-resolution microscopy demystified

5. High-Resolution Electron Microscopy - John C. H. Spence - Google Books. https://books.google.de/books?hl=en&lr=&id=PitoAgAAQBAJ&oi=fnd&pg=PP1&dq=super+resolution+electron+microscopy&ots=eefzeR17V5&sig=ccb2YouRcMhw4tuiIDs0zfGIqSs&redir_esc=y#v=onepage&q=super%20resolution%20electron%20microscopy&f=false.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3