Retinal bipolar cells borrow excitability from electrically coupled inhibitory interneurons to amplify excitatory synaptic transmission

Author:

Yadav Shubhash Chandra,Ganzen Logan,Nawy Scott,Kramer Richard H

Abstract

AbstractBipolar cells of the retina carry visual information from photoreceptors in the outer retina to retinal ganglion cells (RGCs) in the inner retina. Bipolar cells express L-type voltage-gated Ca2+channels at the synaptic terminal, but generally lack other types of channels capable of regenerative activity. As a result, the flow of information from outer to inner retina along bipolar cell processes is generally passive in nature, with no opportunity for signal boost or amplification along the way. Here we report the surprising discovery that blocking voltage-gated Na+channels profoundly reduces the synaptic output of one class of bipolar cell, the type 6 ON bipolar cell (CBC6), despite the fact that the CBC6 itself does not express voltage-gated Na+channels. Instead, CBC6 borrows voltage-gated Na+channels from its neighbor, the inhibitory AII amacrine cell, with whom it is connected via an electrical synapse. Thus, an inhibitory neuron aids in amplification of an excitatory signal as it moves through the retina, ensuring that small changes in the membrane potential of bipolar cells are reliably passed onto downstream RGCs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3