Chemokines Kill Bacteria by Binding Anionic Phospholipids without Triggering Antimicrobial Resistance

Author:

Pontejo Sergio M.ORCID,Martinez Sophia,Zhao Allison,Barnes Kevin,de Anda Jaime,Alimohamadi Haleh,Lee Ernest Y.,Dishman Acacia F.,Volkman Brian F.,Wong Gerard C.L.,Garboczi David N.,Ballesteros AngelaORCID,Murphy Philip M.

Abstract

ABSTRACTClassically, chemokines coordinate leukocyte trafficking during immune responses; however, many chemokines have also been reported to possess direct antibacterial activity in vitro. Yet, the bacterial killing mechanism of chemokines and the biochemical properties that define which members of the chemokine superfamily are antimicrobial remain poorly understood. Here we report that the antimicrobial activity of chemokines is defined by their ability to bind phosphatidylglycerol and cardiolipin, two anionic phospholipids commonly found in the bacterial plasma membrane. We show that only chemokines able to bind these two phospholipids killEscherichia coliandStaphylococcus aureusand that they exert rapid bacteriostatic and bactericidal effects againstE. coliwith a higher potency than the antimicrobial peptide beta-defensin 3. Furthermore, our data support that bacterial membrane cardiolipin facilitates the antimicrobial action of chemokines. Both biochemical and genetic interference with the chemokine-cardiolipin interaction impaired microbial growth arrest, bacterial killing, and membrane disruption by chemokines. Moreover, unlike conventional antibiotics,E. colifailed to develop resistance when placed under increasing antimicrobial chemokine pressure in vitro. Thus, we have identified cardiolipin and phosphatidylglycerol as novel binding partners for chemokines responsible for chemokine antimicrobial action. Our results provide proof of principle for developing chemokines as novel antibiotics resistant to bacterial antimicrobial resistance mechanisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3