Abstract
AbstractThis study investigates the deployability of commercially available impulse-radio ultra-wideband radar (UWB) sensors, in accurately detecting and analysing gait patterns during asymmetric overground locomotion. An adjustable knee brace was fitted on the right knee of 10 able-bodied participants, in five different confinement angles, during a 6-meter walking task to simulate asymmetric walking patterns. A computationally efficient signal processing framework extracts seven spatiotemporal gait parameters from six UWB radar signals, based on their joint Range-Doppler-Time representation. Gait asymmetry was quantified using primarily the symmetry ratio metric of step times. Validated against the gold standard motion capture system, radar-based gait parameters were estimated with 88.2-98.8% accuracy for all settings. By capturing step time symmetry ratios with 95.6±2.8% accuracy, the radar system can effectively distinguish between different gait impairment levels.
Publisher
Cold Spring Harbor Laboratory