Abstract
AbstractThe Mojave and Sonoran Deserts, recognized as a global hotspot for bee biodiversity, are experiencing habitat degradation from urbanization, utility-scale solar energy (USSE) development, and climate change. In this study, we evaluated the current and future distribution of bee diversity in the region, assessed how protected areas safeguard bee species richness, and predicted how global change may affect bees across the region. Using Joint Species Distribution Models (JSDMs) of 148 bee species, we project changes in species distributions, occurrence area, and richness across the region under four global change scenarios between 1971 and 2050. We evaluated the threat posed by USSE development and predicted how climate change will affect the suitability of protected areas for conservation. Our findings indicate that changes in temperature and precipitation do not uniformly affect bee richness across the region. Protected areas in the Sonoran and Mojave Deserts are projected to experience mean losses of up to 5.8 species, whereas protected areas at higher elevations and transition zones may gain up to 7.8 species. Outside protected areas, bee diversity is threatened by urbanization and USSE development. Areas prioritized for future USSE development have an average species richness of 4.2 species higher than the study area average, and lower priority areas have 8.2 more species. USSE zones are expected to experience declines of 2.7 to 8.0 species by 2050 due to climate change alone. Despite the importance of solitary bees for pollination, their diversity is often overlooked in land management decisions. Our results show the utility of JSDMs for extending the usability of existing data-limited bee species records, easing the inclusion of these species in conservation and land management decision-making. The multiple threats from global change drivers underscore the importance of including ecologically vital, though often data-limited, species in land-use decisions.
Publisher
Cold Spring Harbor Laboratory