CIB2 function is distinct from Whirlin in the development of cochlear stereocilia staircase pattern

Author:

Giese Arnaud P. J.,Parker Andrew,Rehman Sakina,Brown Steve D. M.,Riazuddin Saima,Vander Kooi Craig W.,Bowl Michael R.,Ahmed Zubair M.ORCID

Abstract

SummaryVariations in genes coding for calcium and integrin binding protein 2 (CIB2) and whirlin cause deafness both in humans and mice. We previously reported that CIB2 binds to whirlin, and is essential for normal staircase architecture of auditory hair cells stereocilia. Here, we refine the interacting domains between these proteins and provide evidence that both proteins have distinct role in the development and organization of stereocilia bundles required for auditory transduction. Using a series of CIB2 and whirlin deletion constructs and nanoscale pulldown (NanoSPD) assays, we localized the regions of CIB2 that are critical for interaction with whirlin. AlphaFold 2 multimer, independently identified the same interacting regions between CIB2 and whirlin proteins, providing a detailed structural model of the interaction between the CIB2 EF2 domain and whirlin HHD2 domain. Next, we investigated genetic interaction between murineCib2andWhrnusing genetic approaches. Hearing in mice double heterozygous for functionally null alleles (Cib2KO/+;Whrnwi/+) was similar to age-matched wild type mice, indicating that partial deficiency for bothCib2andWhrndoes not impair hearing. Double homozygous mutant mice (Cib2KO/KO;Whrnwi/wi) had profound hearing loss and cochlear stereocilia exhibited a predominant phenotype seen in singleWhrnwi/wimutants. Furthermore, over-expression ofWhrninCib2KO/KOmice did not rescue the stereocilia morphology. These data suggest that, CIB2 is multifunctional, with key independent functions in development and/or maintenance of stereocilia staircase pattern in auditory hair cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3