Abstract
SummaryVariations in genes coding for calcium and integrin binding protein 2 (CIB2) and whirlin cause deafness both in humans and mice. We previously reported that CIB2 binds to whirlin, and is essential for normal staircase architecture of auditory hair cells stereocilia. Here, we refine the interacting domains between these proteins and provide evidence that both proteins have distinct role in the development and organization of stereocilia bundles required for auditory transduction. Using a series of CIB2 and whirlin deletion constructs and nanoscale pulldown (NanoSPD) assays, we localized the regions of CIB2 that are critical for interaction with whirlin. AlphaFold 2 multimer, independently identified the same interacting regions between CIB2 and whirlin proteins, providing a detailed structural model of the interaction between the CIB2 EF2 domain and whirlin HHD2 domain. Next, we investigated genetic interaction between murineCib2andWhrnusing genetic approaches. Hearing in mice double heterozygous for functionally null alleles (Cib2KO/+;Whrnwi/+) was similar to age-matched wild type mice, indicating that partial deficiency for bothCib2andWhrndoes not impair hearing. Double homozygous mutant mice (Cib2KO/KO;Whrnwi/wi) had profound hearing loss and cochlear stereocilia exhibited a predominant phenotype seen in singleWhrnwi/wimutants. Furthermore, over-expression ofWhrninCib2KO/KOmice did not rescue the stereocilia morphology. These data suggest that, CIB2 is multifunctional, with key independent functions in development and/or maintenance of stereocilia staircase pattern in auditory hair cells.
Publisher
Cold Spring Harbor Laboratory