SmartImpute: A Targeted Imputation Framework for Single-cell Transcriptome Data

Author:

Yao Sijie,Yu Xiaoqing,Wang XuefengORCID

Abstract

ABSTRACTSingle-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and tissue transcriptomic complexity. However, the high frequency of dropout events in scRNA-seq data complicates downstream analyses such as cell type identification and trajectory inference. Existing imputation methods address the dropout problem but face limitations such as high computational cost and risk of over-imputation. We present SmartImpute, a novel computational framework designed for targeted imputation of scRNA-seq data. SmartImpute focuses on a predefined set of marker genes, enhancing the biological relevance and computational efficiency of the imputation process while minimizing the risk of model misspecification. Utilizing a modified Generative Adversarial Imputation Network architecture, SmartImpute accurately imputes the missing gene expression and distinguishes between true biological zeros and missing values, preventing overfitting and preserving biologically relevant zeros. To ensure reproducibility, we also provide a function based on the GPT4 model to create target gene panels depending on the tissue types and research context. Our results, based on scRNA-seq data from head and neck squamous cell carcinoma and human bone marrow, demonstrate that SmartImpute significantly enhances cell type annotation and clustering accuracy while reducing computational burden. Benchmarking against other imputation methods highlights SmartImpute’s superior performance in terms of both accuracy and efficiency. Overall, SmartImpute provides a lightweight, efficient, and biologically relevant solution for addressing dropout events in scRNA-seq data, facilitating deeper insights into cellular heterogeneity and disease progression. Furthermore, SmartImpute’s targeted approach can be extended to spatial omics data, which also contain many missing values.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3