Fully-Automated Multicolour Structured Illumination Module for Super-resolution Microscopy

Author:

Wang Haoran,Brown Peter T.ORCID,Ullom Jessica,Shepherd Douglas P.ORCID,Heintzmann RainerORCID,Diederich BenedictORCID

Abstract

AbstractIn the rapidly advancing field of biological imaging, there is a great need for high-resolution imaging techniques that are both cost-effective and accessible, for example to better observe and understand dynamics in intracellular processes. Structured illumination microscopy (SIM) is the method of choice to achieve high axial and lateral resolution in living samples due to its optical sectioning and minimal phototoxicity. However, the high cost and complexity of conventional SIM systems limit their wide application. In our work, we present an open-source, fully-automated, two-color structured illumination module that is compatible with commercially available microscope stands. The compact design, consisting of low-cost single-mode fiber-coupled lasers and a digital micromirror device (DMD), is integrated into the open-source acquisition and control software (ImSwitch) in order to realize real-time super-resolution imaging. This developed system achieves up to a 1.55-fold improvement in lateral resolution compared to conventional wide-field microscopy. To rationally design this module, we developed a model to ensure optimal DMD diffraction per-formance using tilt and roll pixels, thus covering a wide range of low-cost video projectors for use in coherent SIM setups. Our goal is to democratize SIM-based super-resolution microscopy by providing both comprehensive open-source documentation and a modular software framework that works with various hardware components (e.g. cameras, stages) and reconstruction algorithms. In this way, we try to upgrade as many devices as possible to the super-resolution realm.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3