Censored Least Squares for Imputing Missing Values in PARAFAC Tensor Factorization

Author:

Hung Ethan C.ORCID,Hodzic Enio,Tan Zhixin CyrillusORCID,Meyer Aaron S.ORCID

Abstract

AbstractTensor factorization is a dimensionality reduction method applied to multidimensional arrays. These methods are useful for identifying patterns within a variety of biomedical datasets due to their ability to preserve the organizational structure of experiments and therefore aid in generating meaningful insights. However, missing data in the datasets being analyzed can impose challenges. Tensor factorization can be performed with some level of missing data and reconstruct a complete tensor. However, while tensor methods may impute these missing values, the choice of fitting algorithm may influence the fidelity of these imputations. Previous approaches, based on alternating least squares with prefilled values or direct optimization, suffer from introduced bias or slow computational performance. In this study, we propose that censored least squares can better handle missing values with data structured in tensor form. We ran censored least squares on four different biological datasets and compared its performance against alternating least squares with prefilled values and direct optimization. We used the error of imputation and the ability to infer masked values to benchmark their missing data performance. Censored least squares appeared best suited for the analysis of high-dimensional biological data by accuracy and convergence metrics across several studies.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

1. Singular value decomposition for genome-wide expression data processing and modeling

2. Singular Value Decomposition and Principal Component Analysis

3. Tan ZC , Meyer AS . The structure is the message: preserving experimental context through tensor decomposition. February 2024. http://arxiv.org/abs/2402.16638.

4. Tensor Decompositions and Applications

5. A survey of some tensor analysis techniques for biological systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3