Building a small brain with a simple stochastic generative model

Author:

Richter OrenORCID,Schneidman EladORCID

Abstract

The architectures of biological neural networks result from developmental processes shaped by genetically encoded rules, biophysical constraints, stochasticity, and learning. Understanding these processes is crucial for comprehending neural circuits’ structure and function. The ability to reconstruct neural circuits, and even entire nervous systems, at the neuron and synapse level, facilitates the study of the design principles of neural systems and their developmental plan. Here, we investigate the developing connectome ofC. elegansusing statistical generative models based on simple biological features: neuronal cell type, neuron birth time, cell body distance, reciprocity, and synaptic pruning. Our models accurately predict synapse existence, degree profiles of individual neurons, and statistics of small network motifs. Importantly, these models require a surprisingly small number of neuronal cell types, which we infer and characterize. We further show that to replicate the experimentally-observed developmental path, multiple developmental epochs are necessary. Validation of our model’s predictions of the synaptic connections using multiple reconstructions of adult worms suggests that our model identified the fundamental “backbone” of the connectivity graph. The accuracy of the generative statistical models we use here offers a general framework for studying how connectomes develop and the underlying principles of their design.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3