The Neural efficiency score: Validation and application

Author:

Wenger Michael J.ORCID,Townsend James T.,Newbolds Sarah F.ORCID

Abstract

AbstractWe propose an indirect measure of the efficiency of neural processing: the neural efficiency score (NES). The basis for this measure is the hazard function on the reaction time distribution from a task,h(t), which can be interpreted as an instantaneous measure of work being accomplished, and which has been foundational in characterizations of perceptual and cognitive workload capacity (e.g., Townsend & Ashby, 1978; Townsend & Nozawa, 1995; Townsend & Wenger, 2004). We suggest that the global field power on electroencephalographic (EEG) data (Skrandies, 1989, 1990) can function as a proxy for actual energy expended, and then placeh(t) and GFP in a ratio to give a measure that can be interpreted as work accomplished relative to energy expended. To make this proposal plausible, we first need to show that the GFP can be interpreted in terms of energy expended, and we do this using previously unpublished data from an earlier study (Wenger, DellaValle, Murray-Kolb, & Haas, 2017) in which we simultaneously collected EEG and metabolic data during the performance of a cognitive task. Having shown that the GFP can be used as a proxy for energy expended, we then demonstrate the interpretability of the NES by applying it to previously unpublished data from a more recent study (Newbolds & Wenger, 2024). These outcomes suggest the potential for broad applicability of the NES and its potential for characterizing the efficiency of neural energy expenditure in the performance of perceptual and cognitive work.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. A measure for assessing the effects of audiovisual speech integration;Behavior Research Methods,2014

2. The effect of iron-fortified lentils on blood and cognitive status among adolescent girls in bangladesh;Nutrients,2023

3. IRON STATUS AND NEURAL FUNCTIONING

4. Blaha, L. M. , Busey, T. A. , & Townsend, J. T. (2009). An LDA approach to the neural correlates of configural learning. In Proceedings of the 31st annual conference of the cognitive science society. Austin, TX.

5. Perception in chess

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3