The valine-arginine dipeptide repeat protein encoded by mammalian telomeric RNA appears highly expressed in mitosis and may repress global translation
Author:
Al-Turki Taghreed M.ORCID, Mantri VenkataORCID, Willcox SmarandaORCID, Mills C. AllieORCID, Herring Laura E.ORCID, Cho Su-JiORCID, Lee Hannah, Meyer CailynORCID, Anton E. S.ORCID, Griffith Jack D.ORCID
Abstract
AbstractTranslation of mammalian telomeric G-rich RNA via the Repeat Associated non-AUG translation mechanism can produce two dipeptide repeat proteins: repeating valine-arginine (VR) and repeating glycine-leucine (GL). Their potentially toxic nature suggests that one or both must play a needed role in the cell. Using light microscopy combined with antibody staining we discovered that cultured human cells stain brightly for VR during mitosis with VR staining co-localizing with ribosomes.In vitro, VR protein represses translation in a firefly luciferase assay. Affinity purification combined with mass spectrometry identified ribosomal proteins as the major class of VR interacting proteins. Extension to mouse embryonic cerebral cortical development showed strong staining in the ventricular zone where high mitotic index neural progenitor cells proliferate and in the cortical plate where new neurons settle. These observations point to VR playing a key role in mitosis very possibly depressing global translation, a role mediated by the telomere.TeaserThe telomeric valine-arginine dipeptide repeat protein is highly expressed in mitotic cells in culture and in mouse embryonic neural tissue.
Publisher
Cold Spring Harbor Laboratory
Reference44 articles.
1. C. M. Azzalin , P. Reichenbach , L. Khoriauli , E. Giulotto , J. Lingner , Telomeric repeatcontaining RNA and RNA surveillance factors at mammalian chromosome ends. Science (1979) 318 (2007). 2. S. Schoeftner , M. A. Blasco , Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10 (2008). 3. T. Zu , B. Gibbens , N. S. Doty , M. Gomes-Pereira , A. Huguet , M. D. Stone , J. Margolis , M. Peterson , T. W. Markowski , M. A. C. Ingram , Z. Nan , C. Forster , W. C. Low , B. Schoser , N. V. Somia , H. B. Clark , S. Schmechel , P. B. Bitterman , G. Gourdon , M. S. Swanson , M. Moseley , L. P. W. Ranum , Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 108 (2011). 4. F. Ayhan , B. A. Perez , H. K. Shorrock , T. Zu , M. Banez-Coronel , T. Reid , H. Furuya , H. B. Clark , J. C. Troncoso , C. A. Ross , S. Subramony , T. Ashizawa , E. T. Wang , A. T. Yachnis , L. P. Ranum , SCA 8 RAN polySer protein preferentially accumulates in white matter regions and is regulated by eIF 3F. EMBO J 37 (2018). 5. T. Zu , Y. Liu , M. Bañez-Coronel , T. Reid , O. Pletnikova , J. Lewis , T. M. Miller , M. B. Harms , A. E. Falchook , S. H. Subramony , L. W. Ostrow , J. D. Rothstein , J. C. Troncoso , L. P. W. Ranum , RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci U S A 110 (2013).
|
|