Reconstruction and identification of the native PLP synthase complex from Methanosarcina acetivorans lysate

Author:

Agnew AngelaORCID,Humm EthanORCID,Zhou KangORCID,Gunsalus Robert P.ORCID,Zhou Z. HongORCID

Abstract

AbstractMany protein-protein interactions behave differently in biochemically purified forms as compared to theirin vivostates. As such, determining native protein structures may elucidate structural states previously unknown for even well-characterized proteins. Here we apply the bottom-up structural proteomics method,cryoID, toward a model methanogenic archaeon. While they are keystone organisms in the global carbon cycle and active members of the human microbiome, there is a general lack of characterization of methanogen enzyme structure and function. Through thecryoIDapproach, we successfully reconstructed and identified the nativeMethanosarcina acetivoranspyridoxal 5’-phosphate (PLP) synthase (PdxS) complex directly from cryogenic electron microscopy (cryoEM) images of fractionated cellular lysate. We found that the native PdxS complex exists as a homo-dodecamer of PdxS subunits, and the previously proposed supracomplex containing both the synthase (PdxS) and glutaminase (PdxT) was not observed in cellular lysate. Our structure shows that the native PdxS monomer fashions a single 8α/8β TIM-barrel domain, surrounded by seven additional helices to mediate solvent and interface contacts. A density is present at the active site in the cryoEM map and is interpreted as ribose 5-phosphate. In addition to being the first reconstruction of the PdxS enzyme from a heterogeneous cellular sample, our results reveal a departure from previously published archaeal PdxS crystal structures, lacking the 37 amino acid insertion present in these prior cases. This study demonstrates the potential of applying thecryoIDworkflow to capture native structural states at atomic resolution for archaeal systems, for which traditional biochemical sample preparation is nontrivial.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3