Targeted Quantitative Plasma Metabolomics Identifies Metabolite Signatures that Distinguish Heart Failure with Reduced and Preserved Ejection Fraction

Author:

Naeem Fawaz,Leone Teresa C.,Petucci ChristopherORCID,Shoffler Clarissa,Kodihalli Ravindra C.,Hidalgo Tiffany,Tow-Keogh Cheryl,Mancuso Jessica,Tzameli Iphigenia,Bennett Donald,Groarke John D.,Roth Flach Rachel J.ORCID,Rader Daniel J.ORCID,Kelly Daniel P.ORCID

Abstract

AbstractBackgroundTwo general phenotypes of heart failure (HF) are recognized: HF with reduced ejection fraction (HFrEF) and with preserved EF (HFpEF). To develop HF disease phenotype-specific approaches to define and guide treatment, distinguishing biomarkers are needed. The goal of this study was to utilize quantitative metabolomics on a large, diverse population to replicate and extend existing knowledge of the plasma metabolic signatures in human HF.MethodsQuantitative, targeted LC/MS plasma metabolomics was conducted on 787 samples collected by the Penn Medicine BioBank from subjects with HFrEF (n=219), HFpEF (n=357), and matched non-failing Controls (n=211). A total of 90 metabolites were analyzed, comprising 28 amino acids, 8 organic acids, and 54 acylcarnitines. 733 of these samples were also processed via an OLINK protein panel for proteomic profiling.ResultsConsistent with previous studies, unsaturated forms of medium/long chain acylcarnitines were elevated in the HFrEF group to a greater extent than the HFpEF group compared to Controls. A number of amino acid derivatives, including 1- and 3-methylhistidine, homocitrulline, and symmetric (SDMA) and asymmetric (ADMA) dimethylarginine were elevated in HF, with ADMA elevated uniquely in HFpEF. Plasma branched-chain amino acids (BCAA) were not different across the groups; however, short-chain acylcarnitine species indicative of BCAA catabolism were significantly elevated in both HF groups. The ketone body 3-hydroxybutyrate (3-HBA) and its metabolite C4-OH carnitine were uniquely elevated in the HFrEF group. Linear regression models demonstrated a significant correlation between plasma 3-HBA and NT-proBNP in both forms of HF, stronger in HFrEF.ConclusionsThese results identify plasma signatures that are shared as well as potentially distinguish between HFrEF and HFpEF. Metabolite markers for ketogenic metabolic re-programming in extra-cardiac tissues were identified as unique signatures in the HFrEF group, possibly related to the lipolytic action of increased levels of BNP. Future studies will be necessary to further validate these metabolites as HF biosignatures that may guide phenotype-specific therapeutics and provide insight into the systemic metabolic responses to HFpEF and HFrEF.Clinical PerspectiveWhat Is New?“Real world” targeted metabolomic profiling on wide range of metabolites in a diverse population of patients with HFrEF and HFpEF.Levels of 3-hydroxybutyrate and its metabolite C4OH-carnitine were uniquely increased in the HFrEF group and correlated with levels of plasma NT-proBNP in both the heart failure groups, indicating the possibility of a heart-adipose-liver axis.Asymmetric dimethylarginine, a known inhibitor of nitric oxide synthase, was uniquely upregulated in HFpEF suggesting that there may also be an underlying component of vascular dysregulation contributing to HFpEF pathophysiology.What Are the Clinical Implications?The plasma metabolomic changes seen in the heart failure cohorts support the existing theory of metabolic reprogramming, providing further rationale for the pursuit of therapeutic targets for the treatment of heart failure.Quantitative metabolomic profiling shows promise for guiding therapeutic decisions in HFrEF and HFpEF.Modulation of natriuretic peptides may enhance the delivery of ketone and fatty acids to the “fuel starved” failing heart.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3