An Imputation-Based Approach for Augmenting Sparse Epidemiological Signals

Author:

Benefield Amy E.ORCID,Williams DesireeORCID,Nagraj VPORCID

Abstract

AbstractNear-term disease forecasting and scenario projection efforts rely on the availability of data to train and evaluate model performance. In most cases, more extensive epidemiological time series data can lead to better modeling results and improved public health insights. Here we describe a procedure to augment an epidemiological time series. We used reported flu hospitalization data from FluSurv-NET and the National Healthcare Safety Network to estimate a complete time series of flu hospitalization counts dating back to 2009. The augmentation process includes concatenation, interpolation, extrapolation, and imputation steps, each designed to address specific data gaps. We demonstrate the forecasting performance gain when the extended time series is used to train flu hospitalization models at the state and national level.

Publisher

Cold Spring Harbor Laboratory

Reference18 articles.

1. Centers for Disease Control and Prevention. 2023. “FluView - Influenza Hospitalization Surveillance Network (FluSurv-NET): Laboratory-Confirmed Influenza Hospitalizations.” https://gis.cdc.gov/GRASP/Fluview/FluHospRates.html.

2. Centers for Disease Control and Prevention. 2024. “FluView - Interactive Influenza Surveillance Data - a Weekly Influenza Surveillance Report Prepared by the Influenza Division: Outpatient Respiratory Illness Activity Map Determined by Data Reported to ILINet.” https://gis.cdc.gov/grasp/fluview/main.html.

3. The US Influenza Hospitalization Surveillance Network

4. Farrow, David C. , Logan C. Brooks , Aaron Rumack , Ryan J. Tibshirani , and Roni Rosenfeld . 2015. “Delphi Epidata API.” https://github.com/cmu-delphi/delphi-epidata.

5. “Influenza Hospitalization Surveillance Network (FluSurv-NET).” 2023. CDC: Influenza (Flu). https://www.cdc.gov/flu/weekly/influenza-hospitalization-surveillance.htm.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3