Genetic risk score-informed re-evaluation of spirometry quality control to maximise power in epidemiological studies of lung function

Author:

Chen JingORCID,Shrine Nick,Izquierdo Abril G,Guyatt AnnaORCID,Völzke Henry,London StephanieORCID,Hall Ian P,Dudbridge FrankORCID, , ,Wain Louise V,Tobin Martin D,John Catherine

Abstract

AbstractBackground and aimEpidemiological studies of lung function may discard one-third to one-half of participants due to spirometry measures deemed “low quality” using criteria adapted from clinical practice. We aimed to define new spirometry quality control (QC) criteria that optimise the signal-to-noise ratio in epidemiological studies of lung function.Material and methodsWe proposed a genetic risk score (GRS) informed strategy to categorize spirometer blows according to quality criteria. We constructed three GRSs comprised of SNPs associated with forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC) and the ratio of FEV1to FVC (FEV1/FVC) in individuals from non-UK Biobank cohorts included in prior genome-wide association studies (GWAS). In the UK Biobank, we applied a step-wise testing of the GRS association across groups of spirometry blows stratified by acceptability flags to rank the blow quality. To reassess the QC criteria, we compared the genetic association results between analyses including different acceptability flags and applying different repeatability thresholds for spirometry measurements to determine the trade-off between sample size and measurement error.ResultsWe found that including blows previously excluded for cough, hesitation, excessive time to peak flow, or inadequate terminal plateau, and applying a repeatability threshold of 250ml, would maximise the statistical power for GWAS and retain acceptable precision in the UK Biobank. This approach allowed the inclusion of 29% more participants compared to the strictest ATS/ERS guidelines.ConclusionOur findings demonstrate the utility of GRS-informed QC to maximise the power of epidemiological studies for lung function traits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3