Single-cell transcriptomics reveal differences between chorionic and basal plate cytotrophoblasts and trophoblast stem cells

Author:

Morey RobertORCID,Soncin Francesca,Kallol Sampada,Sah Nirvay,Manalo Zoe,Bui Tony,Slamecka Jaroslav,Cheung Virginia Chu,Pizzo Don,Requena Daniela F.,Chang Ching-Wen,Farah Omar,Kittle Ryan,Meads Morgan,Horii Mariko,Fisch Kathleen,Parast Mana M.

Abstract

AbstractCytotrophoblast (CTB) of the early gestation human placenta are bipotent progenitor epithelial cells, which can differentiate into invasive extravillous trophoblast (EVT) and multinucleated syncytiotrophoblast (STB). Trophoblast stem cells (TSC), derived from early first trimester placentae, have also been shown to be bipotential. In this study, we set out to probe the transcriptional diversity of first trimester CTB and compare TSC to various subgroups of CTB. We performed single-cell RNA sequencing on six normal placentae, four from early (6-8 weeks) and two from late (12-14 weeks) first trimester, of which two of the early first trimester cases were separated into basal (maternal) and chorionic (fetal) fractions prior to sequencing. We also sequenced three TSC lines, derived from 6-8 week placentae, to evaluate similarities and differences between primary CTB and TSC. CTB clusters displayed notable distinctions based on gestational age, with early first trimester placentae showing enrichment for specific CTB subtypes, further influenced by origin from the basal or chorionic plate. Differential expression analysis of CTB from basal versus chorionic plate highlighted pathways associated with proliferation, unfolded protein response, and oxidative phosphorylation. We identified trophoblast states representing initial progenitor CTB, precursor STB, precursor and mature EVT, and multiple CTB subtypes. CTB progenitors were enriched in early first trimester placentae, with basal plate cells biased toward EVT, and chorionic plate cells toward STB, precursors. Clustering and trajectory inference analysis indicated that TSC were most like EVT precursor cells, with only a small percentage of TSC on the pre-STB differentiation trajectory. This was confirmed by flow cytometric analysis of 6 different TSC lines, which showed uniform expression of proximal column markers ITGA2 and ITGA5. Additionally, we found that ITGA5+ CTB could be plated in 2D, forming only EVT upon spontaneous differentiation, but failed to form self-renewing organoids; conversely, ITGA5-CTB could not be plated in 2D, but readily formed organoids. Our findings suggest that distinct CTB states exist in different regions of the placenta as early as six weeks gestation and that current TSC lines most closely resemble ITGA5+ CTB, biased toward the EVT lineage.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3