Author:
Chou Leo Y.T.,Shih William M.
Abstract
AbstractCells execute complex transcriptional programs by deploying distinct protein regulatory assemblies that interact with cis-regulatory elements throughout the genome. Using concepts from DNA nanotechnology, we synthetically recapitulated this feature in cell-free gene networks actuated by T7 RNA polymerase (RNAP). Our approach involves engineering nucleic-acid hybridization interactions between a T7 RNAP site-specifically functionalized with single-stranded DNA (ssDNA), templates displaying cis-regulatory ssDNA domains, and auxiliary nucleic-acid assemblies acting as artificial transcription factors (TFs). By relying on nucleic-acid hybridization, de novo regulatory assemblies can be computationally designed to emulate features of protein-based TFs, such as cooperativity and combinatorial binding, while offering unique advantages such as programmability, chemical stability, and scalability. We illustrate the use of nucleic-acid TFs to implement transcriptional logic, cascading, feedback, and multiplexing. This framework will enable rapid prototyping of increasingly complex in vitro genetic devices for applications such as portable diagnostics, bio-analysis, and the design of adaptive materials.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献