Impairment of hippocampal astrocyte-mediated striatal dopamine release and locomotion in Alzheimer’s disease

Author:

Tournier Benjamin B.,Ceyzériat Kelly,Badina Aurélien M.,Gloria Yessica,Fall Aïda,Amossé Quentin,Tsartsalis Stergios,Millet Philippe

Abstract

AbstractClinical and translational research has identified deficits in the dopaminergic neurotransmission in the striatum in Alzheimer’s disease (AD) and this could be related to the pathophysiology of psychiatric symptoms appearing even at early stages of the pathology. We hypothesized that AD pathology in the hippocampus may influence dopaminergic neurotransmission even in the absence of AD-related lesion in the mesostriatal circuit. We thus chemogenetically manipulated the activity of hippocampal neurons and astrocytes in wild-type and hemizygous TgF344-AD (Tg) rats, an animal model of AD pathology. We assessed the brain-wide functional output of this manipulation usingin vivoSingle Photon Emission Computed Tomography to measure cerebral blood flow and D2/3receptor binding. We also assessed the effects of the chemogenetic manipulations on astrocytic and microglial capacity to surround and phagocytize Aβ both locally and in the striatum. Our results show that acute and chronic neuronal and astrocytic stimulation induces widespread effects on the brain regional activation pattern, notably with an inhibition of striatal activation. In the TgF344-AD rats, both these effects were blunted. Chemogenetic stimulation in the hippocampus increased microglial density and its capacity to limit AD pathology, whereas these effects were absent in the striatum perhaps as a consequence of the altered connectivity between the hippocampus and the striatum. Our work suggests that hippocampal AD pathology may alter mesostriatal signalling and induce widespread alterations of brain activity. Neuronal and astrocytic activation may induce a protective, Aβ-limiting phenotype of microglia, which surrounds Aβ plaques and limits Αβ concentration more efficiently.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3