Abstract
SUMMARYDuring oocyte maturation and early embryogenesis, changes in mRNA poly(A)-tail lengths strongly influence translation, but how these tail-length changes are orchestrated has been unclear. Here, we performed tail-length and translational profiling of mRNA reporter libraries (each with millions of 3ʹ-UTR sequence variants) in frog oocytes and embryos, and fish embryos. We found that the UUUUA element, together with the polyadenylation signal (AAUAAA or AUUAAA), specifies cytoplasmic polyadenylation, and identified contextual features that modulate the activity of both elements. In maturing oocytes, this tail lengthening occurs against a backdrop of global deadenylation and the action of C-rich elements that specify tail-length-independent translational repression. In embryos, cytoplasmic polyadenylation becomes more permissive, and additional elements specify waves of stage-specific deadenylation. Together, these findings largely explain the complex tapestry of tail-length changes observed in early frog and fish development, with strong evidence of conservation in both mice and humans.HighlightsUUUUA, modulated by contextual features, specifies most cytoplasmic polyadenylationStage-specific sequence motifs drive waves of tail-length shortening in embryosUUUUA and C-rich motifs can direct tail-length-independent translational repressionTail-length control is conserved in oocytes of frogs, mice, and humans
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献