Genetic deficiency of ribosomal rescue factor HBS1L causes retinal dystrophy associated with Pelota and EDF1 depletion

Author:

Luo ShiyuORCID,Alwattar Bilal,Li QifeiORCID,Bora KiranORCID,Blomfield Alexandra K.ORCID,Lin JasmineORCID,Fulton Anne,Chen Jing,Agrawal Pankaj B.ORCID

Abstract

AbstractInherited retinal diseases (IRDs) encompass a genetically diverse group of conditions in which mutations in genes critical to retinal function lead to progressive loss of photoreceptor cells and subsequent visual impairment. A handful of ribosome-associated genes have been implicated in retinal disorders alongside neurological phenotypes. This study focuses on theHBS1Lgene, encoding HBS1 Like Translational GTPase which has been recognized as a critical ribosomal rescue factor. Previously, we have reported a female child carrying biallelicHBS1Lmutations, manifesting growth restriction, developmental delay, and hypotonia. In this study, we describe her ophthalmologic findings, compare them with theHbs1ltm1a/tm1ahypomorph mouse model, and evaluate the underlying microscopic and molecular perturbations. The patient was noted to have impaired visual function observed by electroretinogram (ERG), with dampened amplitudes of a- and b-waves in both rod- and cone-mediated responses.Hbs1ltm1a/tm1amice exhibited profound retinal thinning of the entire retina, specifically of the outer retinal photoreceptor layer, detected using in vivo imaging of optical coherence tomography (OCT) and retinal cross sections. TUNEL assay revealed retinal degeneration due to extensive photoreceptor cell apoptosis. Loss of HBS1L resulted in comprehensive proteomic alterations in mass spectrometry analysis, with169 proteins increased and 480 proteins decreased including many critical IRD-related proteins. GO biological process and GSEA analyses reveal that these downregulated proteins are primarily involved in photoreceptor cell development, cilium assembly, phototransduction, and aerobic respiration. Furthermore, apart from the diminished level of PELO, a known partner protein, HBS1L depletion was accompanied by reduction in translation machinery associated 7 homolog (Tma7), and Endothelial differentiation-related factor 1(Edf1) proteins, the latter of which coordinates cellular responses to ribosome collisions. This novel connection between HBS1L and ribosome collision sensor (EDF1) further highlights the intricate mechanisms underpinning ribosomal rescue and quality control that are essential to maintain homeostasis of key proteins of retinal health, such as rhodopsin.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3