Abstract
AbstractPrime editing is a powerful genome editing technology, but its efficiency varies depending on the pegRNA design and target locus. Existing computational models for predicting prime editing rates are limited by their focus on specific edit types and by omitting the local chromatin environment. In our study, we developed machine learning models that predict prime editing efficiencies across a wide range of edit types up to 15 bp (’PRIDICT2.0’) and in different chromatin contexts (’ePRIDICT’). Both models can be accessed atwww.pridict.it.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献