Dectin-1 ligands produce distinct training phenotypes in human monocytes through differential activation of signaling networks

Author:

Cheng Quen J.ORCID,Farrell Kylie,Fenn Jeffrey,Ma Zuchao,Makanani Sara K.,Siemsen Jonathan

Abstract

AbstractCells of the innate immune system retain memory of prior exposures through a process known as innate immune training. β-glucan, a Dectin-1 ligand purified from theCandida albicanscell wall, has been one of the most widely u:lized and well-characterized ligands for inducing innate immune memory. However, many Dectin-1 agonists exist, and it is not known whether all Dectin-1 ligands produce the same phenotype. Using a well-establishedin vitromodel of trained immunity, we compared two commercially available Dectin-1 agonists, zymosan and depleted zymosan, with the gold standard β-glucan in the literature. We found that depleted zymosan, a β-glucan purified fromSaccharomyces cerevisiaecell wall through alkali treatment, produced near identical training effects asC. albicansβ-glucan. However, untreated zymosan produced a distinct training effect from β-glucans at both the transcript and cytokine level. Training with zymosan diminished, rather than potentiated, induction of key cytokines such as TNF, IL-12, and IL-6. Zymosan activated NF𝓀B and AP-1 transcription factors more strongly than β-glucans. The addition of the toll-like receptor (TLR) ligand Pam3CSK4 was sufficient to convert the training effect of β-glucans to a phenotype resembling training with zymosan. We conclude that differential activation of TLR signaling pathways determines the phenotype of innate immune training induced by Dectin-1. These findings bring clarity to the specific question of which Dectin-1 agonists produce prototypical training effects and provide broader insight into how signaling networks regulate innate immune training.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3