Hidradenitis Suppurativa Patients Exhibit a Distinctive and Highly Individualized Skin Virome

Author:

Jansen DaanORCID,Bens Lene,Wagemans Jeroen,Green Sabrina I.,Hillary Tom,Vanhoutvin Tine,Laethem An Van,Vermeire Séverine,Sabino João,Lavigne Rob,Matthijnssens JelleORCID

Abstract

ABSTRACTHidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by recurring painful skin lesions. Despite ongoing research, the exact cause underlying the initiation and progression of disease remains unknown. While prior research has linked the skin microbiota to HS pathology, the role of viruses has remained unexplored. To investigate the skin virota, metagenomic sequencing of viral particles was performed on 144 skin samples from 57 individuals (39 HS patients and 18 controls). It was found that the virome is not only linked to BMI, but also to the presence and severity of HS, marking a diverging viral profile in the progression of disease. Despite no differences in alpha-diversity, HS patients exhibited a significantly higher beta-diversity compared to healthy controls, indicating a more personalized virome with reduced viral sharing among patients. We identified distinct groups of commonly shared phages, referred to as the core phageome, associated with either healthy controls or patients. Healthy controls displayed a higher abundance of two coreCaudoviricetesphages predicted to infectCorynebacteriumandStaphylococcus, comprising normal skin commensals. In contrast, HS patients carried previously uncharacterized phages that were more prevalent in advanced stages of the disease, which likely infectPeptoniphilusandFinegoldia, known HS-associated pathogens. Interestingly, genes involved in superinfection exclusion and antibiotic resistance could be found in phage genomes of healthy controls and HS patients, respectively. In conclusion, we report the existence of distinct core phages that may have clinical relevance in HS pathology by influencing skin bacteria through mechanisms such as superinfection exclusion and antibiotic resistance.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3