Trade-offs, trade-ups, and high mutational parallelism underlie microbial adaptation to extreme feast/famine

Author:

Behringer Megan G.ORCID,Ho Wei-ChinORCID,Miller Samuel F,Worthan Sarah B.ORCID,Cen Zeer,Stikeleather Ryan,Lynch Michael

Abstract

AbstractMicrobes are robust organisms capable of rapidly adapting to complex stress, enabling the colonization of harsh environments. In nature, microbes are regularly challenged by starvation, which is a particularly complex stress because resource limitation often co-occurs with changes in pH, osmolarity, and toxin accumulation created by metabolic waste. Often overlooked are the additional complications introduced by eventual resource replenishment as successful microbes must withstand rapid environmental shifts before swiftly capitalizing on replenished resources to avoid invasion by competing species. To understand how microbes navigate trade-offs between growth and survival, ultimately adapting to thrive in environments with extreme fluctuations, we experimentally evolved 16Escherichia colipopulations for 900 days to repeated feast/famine cycles of 100-day starvation before resource replenishment. Using longitudinal population-genomic analysis, we found that evolution in response to extreme feast/famine is characterized by narrow adaptive trajectories with high mutational parallelism and notable mutational order. Genetic reconstructions reveal that early mutations result in trade-offs for biofilm and motility but trade-ups for growth and survival, as these mutations conferred correlated advantages during both short-term and long-term culture. Our results demonstrate how microbes can navigate the adaptive landscapes of regularly fluctuating conditions and ultimately follow mutational trajectories that confer benefits across diverse environments.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3