CONE: COntext-specific Network Embedding via Contextualized Graph Attention

Author:

Liu RenmingORCID,Yuan Hao,Johnson Kayla A,Krishnan ArjunORCID

Abstract

AbstractHuman gene interaction networks, commonly known as interactomes, encode genes’ functional relationships, which are invaluable knowledge for translational medical research and the mechanistic understanding of complex human diseases. Meanwhile, the advancement of network embedding techniques has inspired recent efforts to identify novel human disease-associated genes using canonical interac-tome embeddings. However, one pivotal challenge that persists stems from the fact that many complex diseases manifest in specific biological contexts, such as tissues or cell types, and many existing interactomes do not encapsulate such information. Here, we propose CONE3, a versatile approach to generate context-specific embeddings from a context-free interactome. The core component of CONE consists of a graph attention network with contextual conditioning, and it is trained in a noise contrastive fashion using contextualized interactome random walks localized around contextual genes. We demonstrate the strong performance of CONE embeddings in identifying disease-associated genes when using known associated biological contexts to the diseases. Furthermore, our approach offers insights into understanding the biological contexts associated with human diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3