RELAXING SELECTIVE PRESSURES ON DEVELOPMENTALLY COMPLEX INTEGUMENTARY STRUCTURES: FEATHER VANE SYMMETRY EVOLVES IN ADDITION TO BODY MASS AND WING LENGTH AFTER FLIGHT LOSS IN RECENT BIRDS

Author:

Saitta Evan T.ORCID,Carden Lilja,Mitchell Jonathan S.,Makovicky Peter J.

Abstract

ABSTRACTFeathers are complex integumentary structures with high diversity across species and within plumage and have varied functions (e.g., thermoregulation, flight). Flight is lost in many crown lineages, and frequently occurs in island ‘founding’ or semiaquatic context. Different extant lineages lost flight across at least three orders of magnitude of time (∼79.58 Ma–15 Ka). Flight loss’s effect on sensory capacity, brain size, and skeletomusculature have been studied, but less work exists on relations between flightlessness and feathers. To understand how flight loss affects feather anatomy, we measured 11 feather metrics (e.g., barb length, barb angle) from primaries, tertials, rectrices, and contour feathers on skins of 30 flightless taxa and their phylogenetically closest volant taxa, supplemented with broader sampling of primaries across all orders of volant crown birds. Our sample includes 27 independent losses of flight; the sample contains nearly half the extant flightless species count and matches its ∼3:2 terrestrial:semiaquatic ratio. Vane symmetry increases in flightless lineages, and these patterns are strongest in flight feathers and weakest in coverts. Greatest changes in feathers are in the oldest flightless lineages like penguins, which show robust filaments (rachis, barbs, and barbules) on small feathers, and ratites, which show high interspecific diversity with plumulaceous filaments and/or filament loss. Phylogenetic comparative methods show that some of these microscopic feather traits, such as barb/barbule length and rachis width, are not as dramatically modified upon flight loss as are body mass increase and relative wing and tail fan reduction, whereas the effect on vane symmetry is more easily detected. Upon relaxing selection for flight, feathers do not soon significantly modify many of their flight adaptations, although increased vane symmetry is likely the most detectable shift. Feathers of recently flightless lineages are in many ways like those of their volant relatives. Feather microstructure evolution is often subtle in flightless taxa, except when flight loss is ancient, perhaps because developmental constraints act upon feathers and/or selection for novel feather morphologies is not strong. Changes in skeletomusculature of the flight apparatus are likely more evident in recently flightless taxa and may be a more reliable way to detect flight loss in fossils, with increased vane symmetry as potentially a microscopic signal. Finally, we see an intriguing, reversed pattern in feather evolution after flight loss from the pattern proposed in popular developmental models of feathers, with the later stages of feather development (asymmetric displacement of barb loci) being lost more readily, while early stages of development (e.g., differentiated barb ridges on follicle collar) are only lost after many millions of years of flightlessness.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3