Exome copy number variant detection, analysis and classification in a large cohort of families with undiagnosed rare genetic disease

Author:

Lemire GabrielleORCID,Sanchis-Juan Alba,Russell Kathryn,Baxter Samantha,Chao Katherine R.,Singer-Berk Moriel,Groopman Emily,Wong Isaac,England Eleina,Goodrich Julia,Pais Lynn,Austin-Tse Christina,DiTroia Stephanie,O’Heir Emily,Ganesh Vijay S.,Wojcik Monica H.,Evangelista Emily,Snow Hana,Osei-Owusu Ikeoluwa,Fu Jack,Singh Mugdha,Mostovoy Yulia,Huang Steve,Garimella Kiran,Kirkham Samantha L.,Neil Jennifer E.,Shao Diane D.,Walsh Christopher A.,Argili Emanuela,Le Carolyn,Sherr Elliott H.,Gleeson Joseph,Shril Shirlee,Schneider Ronen,Hildebrandt Friedhelm,Sankaran Vijay G.,Madden Jill A.,Genetti Casie A.,Beggs Alan H.,Agrawal Pankaj B.,Bujakowska Kinga M.,Place Emily,Pierce Eric A.,Donkervoort Sandra,Bönnemann Carsten G.,Gallacher Lyndon,Stark Zornitza,Tan Tiong,White Susan M.,Töpf Ana,Straub Volker,Fleming Mark D.,Pollak Martin R.,Õunap Katrin,Pajusalu Sander,Donald Kirsten A.,Bruwer Zandre,Ravenscroft Gianina,Laing Nigel G.,MacArthur Daniel G.,Rehm Heidi L.,Talkowski Michael E.,Brand Harrison,O’Donnell-Luria AnneORCID

Abstract

AbstractCopy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and with new innovative methods can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the GREGoR consortium. Each family’s CNV data was analyzed using theseqrplatform and candidate CNVs classified using the 2020 ACMG/ClinGen CNV interpretation standards. We developed additional evidence criteria to address situations not covered by the current standards. The addition of CNV calling to exome analysis identified causal CNVs for 173 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb with estimates that 44% would not have been detected by standard chromosomal microarrays. The causal CNVs consisted of 141 deletions, 15 duplications, 4 suspected complex structural variants (SVs), 3 insertions and 10 complex SVs, the latter two groups being identified by orthogonal validation methods. We interpreted 153 CNVs as likely pathogenic/pathogenic and 20 CNVs as high interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3