Refined movement analysis in the Staircase test reveals differential motor deficits in mouse models of stroke

Author:

Skrobot MatejORCID,Sa Rafael DeORCID,Walter JosefineORCID,Vogt ArendORCID,Paulat RaikORCID,Lips JanetORCID,Mosch LarissaORCID,Mueller SusanneORCID,Dominiak Sina,Sachdev RobertORCID,Böhm-Sturm PhilippORCID,Dirnagl UlrichORCID,Endres MatthiasORCID,Harms ChristophORCID,Wenger NikolausORCID

Abstract

AbstractAccurate assessment of post-stroke deficits is vital in translational research. Recent advances in machine learning provide unprecedented precision in quantifying rodent motor behavior post-stroke. However, the extent to which these tools can detect lesion-specific upper extremity deficits remains unclear. Using proximal middle cerebral artery occlusion (MCAO) and cortical photothrombosis (PT), we assessed post-stroke impairments in mice through the Staircase test. Lesion locations were identified using 7T-MRI. Machine learning was applied to reconstruct kinematic trajectories usingMouseReach, a data-processing toolbox. This yielded 30 refined outcome parameters effectively capturing motor deficits. Lesion reconstructions located ischemic centers in the striatum (MCAO) and sensorimotor cortex (PT). Pellet retrieval was altered in both cases but did not correlate with stroke volume or ischemia extent. Instead, cortical ischemia was characterized by increased hand slips and modified reaching success. Striatal ischemia led to progressively prolonged reach durations, mirroring delayed symptom onset in basal ganglia strokes. In summary, refined machine learning-based movement analysis revealed specific deficits in mice after cortical and striatal ischemia. These findings emphasize the importance of thorough behavioral profiling in preclinical stroke research to increase translational validity of behavioral assessments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3